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The effectiveness with which various sources excite convective instabilities in a 
boundary layer is found by a simple method. Chosen field values of the adjoint to the 
Tollmien-Schlichting eigensolution, normalized appropriately, indicate the amplitude 
of the unstable disturbance which will result for direct time-harmonic forcing by 
sources of momentum, mass and vorticity, as well as by boundary motions. For the 
Blasius boundary layer, forcing in the vicinity of the critical layer induces the largest 
response. At this position, the response to forcing in the wall-normal direction is 
typically 5 % of that resulting from streamwise forcing of the same magnitude. At the 
wall, normal motions elicit a much stronger response than streamwise motions. 
Forcing close to the lower branch of the neutral stability curve leads to the largest 
response. The adjoint field values are equivalent to the residues of Fourier-inversion 
integrals. This equivalence is discussed for two problems; the vibrating ribbon problem 
and excitation of an inviscid free shear layer by a vorticity source. The efficiency factor 
is calculated for the scattering of ' acoustic' waves into Tollmien-Schlichting waves in 
the presence of small surface roughness, at a finite Reynolds number, based on the 
Orr-Sommerfeld operator. This is achieved by using the solution of an inhomogeneous 
adjoint problem. The results are compared with the asymptotic solutions obtained 
from triple-deck theory, and agree with previous finite-Reynolds-number calculations. 

1. Introduction 
The growth of linear Tollmien-Schlichting waves in boundary layers is of central 

concern in the study of transition. The many receptivity processes by which these 
convective instabilities are initiated play a key role in defining transition location, and 
are investigated by a variety of experimental and mathematical techniques. 

After Schubauer & Skramstad (1 947) observed Tollmien-Schlichting waves growing 
in a real boundary layer, Gaster (1965) modelled the response to an oscillating ribbon 
in terms of the spatial modes of the Orr-Sommerfeld equation. A long time after 
switching on the source, the flow far downstream is dominated by the spatial 
eigensolution with the largest streamwise growth. An analysis of forced wakes and 
shear layers (Huerre & Monkewitz 1985; Balsa 1988) reveals similar behaviour. 

The solutions to these ' forced-response' problems emphasize the structure of the 
response rather than the magnitude. The amplitude of the growing wave which is 
produced by direct forcing depends on the nature and geometry of the source, its 
frequency and its physical location, together with the properties of the instability and 
the flow within which it exists. Such dependencies, to date, have not been charted, 
despite the fact that they define the physics of the process through which the unstable 
disturbance is established. 
t Present address: Dynaflow, Inc., 3040 Riverside Drive, Suite 109, Columbus, OH 43221, USA. 
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The solution method is partly responsible for the lack of emphasis on this aspect of 
the problem. The Briggs method (Ashpis & Reshotko 1990), when applied to Fourier- 
inversion integrals, gives the time and space asymptotic response to a point harmonic 
forcing in terms of derivatives with respect to wavenumber of either a flow quantity or 
the dispersion relation. This is a residue from contour integration around a pole in the 
complex wavenumber plane (Gaster 1965; Tam 1978; Huerre & Monkwitz 1985; Balsa 
1988; Ashpis & Reshotko 1990; Kozlov & Ryzhov 1990). The wavenumber derivative 
factors can certainly be calculated, but they retain too much mathematical complexity 
to provide direct understanding of the way in which the boundary layer responds to 
different sources and configurations. 

By contrast to forced-response problems, a class of ' natural-response ' problems has 
also been studied. Acoustic disturbances can be scattered into Tollmien-Schlichting 
waves by boundary roughness (Crouch 1992; Zhigulev & Fedorov 1987; Goldstein & 
Hultgren 1987; Goldstein 1985), by non-uniformity in the flow near a leading edge 
(Goldstein 1983; Goldstein, Sockol & Sanz 1983; Ackerberg & Phillips 1971), by 
marginal separation (Goldstein, Leib & Cowley 1987), or by mean suction or 
variations in surface impedance (Choudhari & Streett 1992). Here the amplitude of the 
response is related to the amplitude of the excitation (strength of the acoustic wave) by 
a coupling coefficient. This coefficient is the product of an efficiency factor, which 
depends upon the nature of the scattering agent, and a factor representing the 
geometry. 

This class of problems has been addressed previously using asymptotic methods 
based on triple-deck theory. The solutions are constructed to be valid in the vicinity of 
the lower branch of the neutral stability curve, in the limit of an infinitely large 
Reynolds number. Solutions to natural-response problems at a finite Reynolds number 
are reported by Crouch (1992) and Choudhari & Streett (1992), based on the 
evaluation of residues. Their results indicate that the asymptotic theory provides valid 
estimates of the finite-Reynolds-number results, at least in the vicinity of the lower 
branch. 

The aim of the present paper is to introduce an alternative treatment of the 
receptivity problem (for both forced- and natural-response classes) that features 
extensive use of the properties of adjoint solutions. The work of Salwen & Grosch 
(198 1 , hereinafter referred to as SG), though unrelated historically to the receptivity 
problem, provides a large part of the mathematical basis for the analysis. They develop 
a theory of temporal and spatial eigenfunction expansions for solutions of the 
Orr-Sommerfeld equation. The linearized Navier-Stokes equations are not self-adjoint 
(with respect to the usual inner product, i.e. the volume integral of the vector product 
of velocities), so that a bi-orthogonal eigenfunction set is required (Schensted 1960; 
Roberts 1960; Eckhaus 1965; Chandrasekhar 1989). For every eigensolution there is 
an adjoint which has an equal and opposite frequency and wavenumber, and its own 
distinct field. SG demonstrate that the adjoint eigensolution can be used to filter a 
general disturbance field to identify the amplitude of the corresponding eigensolution 
that is present. This is a generalization of the use of the Fourier integral to identify 
harmonic components. 

In the present paper, properties of the bi-orthogonal eigenfunction expansion in 
spatial modes are used to determine the amplitude of the Tollmien-Schlichting wave 
component arising in both forced- and natural-response receptivity problems at a finite 
Reynolds number. This work provides a simple and direct means of solving both 
classes of problem. The concept of adjointness, which to date has been considered 
purely as a mathematical construct, is intimately related to the physics of the process 
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by which natural motions of a boundary layer are excited by external means. We 
investigate the form of the adjoint to the Tollmien-Schlichting wave travelling in the 
Blasius boundary layer, and expose aspects of the physics of that flow which have not 
been considered previously. 

The work of SG, in which initial value problems were addressed, is extended to solve 
the inhomogeneous Orr-Sommerfeld problem using a modal expansion in spatial 
eigenmodes. The amplitude of the Tollmien-Schlichting wave, which is produced by a 
source distribution, is given by the inner product of the source with a particular adjoint 
field. The role of the adjoint eigensolutions, over and above their filtering properties, 
then becomes evident. The adjoint eigensolution field defines the efficiency with which 
a particular forcing excites the eigensolution. The amplitude of the convectively 
unstable eigensolution induced by harmonic point forcing is shown to be simply the 
value of its adjoint eigensolution at the forcing location. For momentum sources, as 
might be used to model a vibrating ribbon, the adjoint velocity is examined; for 
vorticity sources, the adjoint stream function is employed; for mass sources, the adjoint 
pressure is relevant. For forcing at a wall the normal adjoint stress indicates the 
influence of unsteady boundary motion. 

At locations where the value of an adjoint eigensolution (e.g. the stream function) 
is large, the application of forcing (a vorticity source) will induce a large response; if 
the adjoint eigensolution is small, forcing at that point will elicit only a small response. 
This is of particular interest in problems of control, where the production of a large 
response with a small force is the key to effective control. 

SG investigate the temporal eigenfunction expansion solution to an initial value 
problem and compare it to the same solution obtained by inverting a Laplace transform 
(Gustavsson 1979). They note that the residues and branch cut integrals are equal to the 
inner product of the initial field with the adjoint eigensolutions. The equivalence of the 
residue from contour integration and adjoint field values is discussed in the present 
paper for two example force-response problems which have been studied previously. 
For the classical vibrating ribbon problem (Ashpis & Reshotko 1990), the response 
amplitude reduces to the value of the adjoint pressure at the wall. For the excitation of 
an inviscid free shear layer by a point vorticity source (Huerre & Monkewitz 1985), the 
adjoint stream function at the source location alone defines the strength of coupling 
between source and instability. 

Tollmien-Schlichting waves in the Blasius boundary layer have been studied by 
numerous researchers, though the form of the adjoint eigensolution has received little 
attention. We solve the adjoint Orr-Sommerfeld equation here - a step which is no 
harder than solving the regular problem. With the application of the appropriate 
normalization condition, the receptivity characteristics of the spatially growing 
Tollmien-Schlichting wave are mapped readily as a function of Reynolds number and 
frequency. The disturbance, as measured by the maximum streamwise velocity 
fluctuation, appears to be most sensitive to forcing in the neighbourhood of the critical 
layer (where the real part of the disturbance phase speed matches the mean flow speed). 
Streamwise forcing is much more effective than forcing in the wall-normal direction. 
At the wall, by contrast, wall-normal motions produce a much larger response than 
streamwise motions. 

Tollmien-Schlichting waves can grow by several orders of magnitude in the unstable 
region, especially at lower frequencies. This growth swamps the comparatively small 
variations of the adjoint fields with streamwise location. Forcing at positions close to 
the lower branch of the neutral stability curve thus leads to the largest boundary layer 
response, simply by virtue of the disturbance growth factor (Crouch 1992). 
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Roughness or suction at the wall beneath a boundary layer scatters free-stream 
disturbances very effectively. The efficiency with which this process takes place is found 
here by solving for a second adjoint field in addition to the adjoint to the 
Tollmien-Schlichting wave. This second field is the solution of a carefully formulated 
inhomogeneous adjoint problem. As with the adjoint eigensolution, examination of the 
various field values indicates the effectiveness with which various agents, such as 
surface roughness or suction, scatter acoustic waves into Tollmien-Schlichting waves. 
Comparison is made with the asymptotic theory of Goldstein (1985), and direct 
agreement is found with the results of Crouch (1992), and Choudhari & Streett (1992). 

The paper is arranged as follows. In $2 the Lagrange identity is developed. This 
relation is used throughout the paper. In $ 3  those elements of the work of SG relevant 
to the present study are reviewed. In $4 the general forced response problem is solved, 
and in $ 5  the theory is applied to the Blasius boundary layer. In $6 the scattering of 
free-stream disturbances into Tollmien-Schlichting waves is investigated. 

2. The Lagrange identity and generalized Green's theorem 
The Lagrange identity (Ince 1944) and generalized Green's theorem (Morse & 

Feshbach 1953) are key elements of the present analysis. They are developed in this 
section for the linearized Navier-Stokes equations for incompressible viscous flow, 
linearized around a steady flow V(r). All velocities are scaled on the flow velocity at 
infinity U,, pressures on p u g  (p = density), and lengths on some characteristic 
dimension S. Time is scaled on S/U,. 

Linear velocity disturbances v(r, t )  and pressure disturbances p(r ,  t )  upon the flow 
V(r) satisfy 

av 
at 
- + L ( V ; R ) v + V p = O ,  

v - v  = 0, 

where the ith component of the linear operator L( V ;  R) is 

av. av, 1 a%, 
( L ( V ; R ) v ) i  = v/-+v.---- 

3 a x j  3axj  ax; ( 3 )  

The Reynolds number is R = U ,  S / v  where v is the kinematic viscosity. 
For any pair of suitably differentiable fields s = ( v , p )  and i = (ij,j) ( ( v , p )  does not 

have to satisfy (l), (2)), defined over the flow domain, the following Lagrange identity 
is satisfied: 

[ g + L ( V ; R ) v + v p  .ij+v.vp" + v .  - + L ( V ; R ) i j + V j  +pv . i j  1 1": 1 1  
= - ( ~ * i j ) + v - J ( s , Q ,  a (4)  

at 

where f,( V ;  R)  is the adjoint linearized Navier-Stokes operator with components 

The vector J(s, Q is the bilinear concomitant with components 

(J(s, Q)j = vi Sij + cTij ai, 
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where (7) 

Note that replacing - f i j a y / a x i  by yafi i /axi  in (9 ,  and replacing V-up" by 
V-u(p"+ V - f i )  in (4) also gives a valid identity, with an additional factor V,fi, 8, 
introduced into Gij This gives an apparent correspondence with the term $vi 
appearing in the definition of vij.  For the present analysis the definitions (5) and (8) 
serve best. 

Examining the second term in square brackets on the left-hand side of the Lagrange 
identity (4) we define the adjoint equations 

aij 
-+QV;R)ij+Vp"=O, at (9) 

V-i? = 0. (10) 

The integral over space and time of (4) gives the generalized Green's theorem for the 
linearized Navier-Stokes equations. 

On a historical note, the use of adjoint equations as a means of solving ordinary 
differential equations can be traced back to work of Lagrange in the late 18th century 
(see Lagrange's collected works 1867). Ince (1944) credits the use of the word 'adjoint' 
to Fuchs (1858), though Fuchs wrote in German. There are several textbooks which 
deal with adjoint equations and operators within a general mathematical framework 
(e.g., Coddington & Levinson 1955; Morse & Feshbach 1953; Courant & Hilbert 1962; 
Nayfeh 198 1). In bifurcation theory adjoint eigensolutions are indispensable (Iooss & 
Joseph 1980), since they are a key element in the application of the Fredholm 
alternative - a solvability condition used widely in the construction of series 
expansions. This solvability condition has at the same time been used to compute the 
effect of non-parallelism on the linear stability of boundary layer and shear flows (Ling 
& Reynolds 1973; Saric & Nayfeh 1975). Hill (1992) has used this approach to study 
the control of the global instability of a cylinder wake. Adjoint equations also play a 
role in the construction of variational principles for non-conservative systems 
(Finlayson 1972; Chandrasekhar 1989; Vujanovic & Jones 1989). The theory of 
eigenfunction expansions is yet another area of application. Fourier integrals are 
perhaps the best known examples of an eigenfunction expansion, though there are 
many other possibilities (Titchmarsh 1962). A theory of eigenfunction expansions for 
non-self-adjoint equations (many governing equations of physics are non-self-adjoint) 
has also been developed (Friedman & Mishoe 1956; Schensted 1960; Roberts 1960; 
Eckhaus 1965; Drazin & Reid 1981), with Salwen (1979) and SG studying the 
eigenfunction expansions for the Orr-Sommerfeld equation. In the area of receptivity, 
the solvability condition has been used to construct amplitude equations which 
describe the interaction of free-stream and boundary-layer disturbances (Zhigulev, 
Sidorenko & Tumin 1980; Zhigulev & Fedorov 1987). This leads to the present work 
where the significance of adjoint solutions is described for a variety of receptivity 
problems. 
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3. Bi-orthogonality 
3.1. A brief review 

The reader is referred to the work of SG for a detailed discussion of the bi- 
orthogonality properties of both the temporal and spatial eigensolutions of the 
Orr-Sommerfeld equation. A brief review is given here of the points relevant to the 
present development. 

Consider a boundary layer growing along a flat plate. The Cartesian coordinate 
origin is located on the plate a dimensional distance L from the leading edge, and S is 
chosen as ( V L / U J / ~ .  Then V(r) x U ( y ) 9 ,  where U ( y )  is the Blasius boundary profile. 

Writing u = V x ($(x, y, t )  2) for some stream function $(x, y ,  t),  z" being the unit 
vector normal to the plane of the flow, the governing vorticity equation is given by the 
z-component of the curl of (1) : 

Similarly, writing ii = V x ($(x, y ,  t ) i ) ,  the adjoint equation is 

- dU a2$ 1 

No-slip conditions 
$ = a$/ay = o and $ = a$/ay = o 

are imposed on the plate. As lyl+ co disturbances are required to remain bounded. 
With a, d being wavenumbers, and w, o", being frequencies, let 

$(x, y ,  t )  = +,,,,(y) ei(as-wt), $(x, y ,  t )  = $,(y) e-i(2s-"'t) (14) 
be solutions of (11) and the adjoint (12), respectively (i.e. #,,(y) satisfies the 
Orr-Sommerfeld equation, and &G(y) an adjoint Orr-Sommerfeld equation). The 
pressure eigensolution and its adjoint 

Substituting these velocity and pressure fields into the Lagrange identity (4) (with 
V(r) = U ( y ) 9 ) ,  the entire left-hand side is zero, from which it can be deduced (SG; 
Salwen 1979) that 

with <#,,6,) = 1 u-fidy, [#a,,&iol = i-J((u,p),(fi,p"))dy. 

- (w - o",) (#,,, 6 2 G )  + (a - 4 [#,,, $261 = 0, (16) 

s,p (17) 
a, 

0 

When considering the spatial stability problem, w and 3 are chosen to be real and 
equal. SG show that both the discrete and continuous parts of the spectrum of a 
coincide with the spectrum for the adjoint wavenumber d .  

SG construct a bi-orthogonal eigensolution set. Let #anu(y), n = 1, . . . , N (  w ) ,  
represent the discrete spatial modes with wavenumbers a,, of which there are N(w), 
and &!(y) the continuum mode solutions (with four branches v = 1, ..., 4) with 
wavenumbers at), parameterized by 0 d k < 00. With $,n,(y) and &(y) being the 
corresponding adjoint solutions, then 

[#,,,, qJa,,l = S,,, (18) 
[&!, 6,J = t$,,,, 4g1 = 0, (19) 
[#t,, = S(k-k') 6,, Y, ,/A = 1, . . ., 4. (20) 

12, m = 1, . . ., NU), 
v = 1, . . * , 4, 
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It follows readily from (16) that 

(Replace w by w + Sw and G by w in (1 6), make a Taylor expansion for a(w + Sw), then 
let 60 approach zero.) This gives an explicit expression for the group velocity for 
solutions of the Orr-Sommerfeld equation. This also indicates that (q5,,, Jaw) and 

J,,] differ only by a factor of the group velocity. 
There is an assumption implicit in the development of SG, namely that 

if a = Z then [q5,,,Ja,,] + 0. (22) 

Clearly, from (21), if the chosen solution is at a branch-point singularity with 
dw/da = 0, then [q5,,, Jaw] = 0 ((q5,w, Jaw) is always bounded). This violates the 
assumption (22), and consequently the development fails since the normalization 
condition [q5,,, q?,,,,] = 1 cannot be applied. Schensted (1960) discusses the developments 
necessary to deal with such cases. 

3.2. The adjoint Jields asjl ters 
If +(x, y) e-i”t is a solution of the homogeneous equation (1 l), it can be expressed as 
a sum of spatial eigensolutions 

N(oi) 

+(x, y )  eciWt = C a, q5,,,(y) ei(an2-wt) + 5 s,T dk A t )  q5(u)(  kw y ei(ap’x-ot) 2 (23) 

where a, and A t )  are constants. If s = ( u , p )  represents the velocity and pressure field 
for which (23) is the stream function, and $, = (fiamo(y), j7amo(y))e-i(amx-wt) is the 
adjoint to the mth discrete eigenmode then 

n = l  u = l  

N ( w )  
+ JOE dk A t )  [q5(u)  6 1 ei(ap)-am)z j: i . J ( s ,  im) dy = C a, J,,,] ei(an-am)x 

ktor a m w  
n=1 u = l  

(24) - - a,. 

A disturbance field which satisfies the homogeneous equations can be filtered using 
the integral on the left-hand side of (24) to identify the amplitude of a particular 
mode. Replacing 5, by the adjoint to a continuum mode yields the corresponding 
amplitude A t ) .  

4. Response to a time-harmonic source distribution 
In this section a general forced-response problem is solved. Sources of momenta and 

mass, together with an unsteady boundary condition, are prescribed. The adjoint to the 
downstream-growing eigenmode is then used to correlate the far-field response with the 
sources, by employing the Lagrange identity. The effect of sources of vorticity and 
boundary motions is then considered. Finally, the derivation is verified by comparison 
with two known solutions. 

4.1. Formulation of a general problem 
Consider a source distribution oscillating harmonically at real frequency w( > 0), 
including sources of momenta of strength q(x,  y ;  w )  ecifot, and mass sources 
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q ( x ,  y ;  w )  eciwt. Boundary velocities u,(x; w )  eciwt are specified at y = 0. The governing 
equations are 

(25) 

V . 6  = p ( x , y ; w ) ,  (26) 

i? = u, (x ;w)  on y = 0, (27) 

-iwi?+L( U$; R) i?+ Vfi = q(x, y ;  w) ,  

for some fields i?(x, y ; w )  and f i (x ,y ;  w).  The sources are assumed to be localized, in so 
far as they disappear for 1x1 larger than some value X > 0, say. 

Let the discrete spatial mode of interest have stream function $,,(y) ei(ax-wt) , and 
travel downstream with Re (aalaw) also positive. Typically the mode with largest value 
of - Im (a(w)) would be considered. The amplitude of this mode far Qownstream as a 
result of the excitation by the various sources will now be found. 

4.2. Amplitude of the response 

Returning again to the Lagrange identity (4), with V = U(y)$ ,  let s = ( u , p )  = 
(i?,$)e-iwt be the solution to the inhomogeneous equations (25)-(27). The fields (v”,p”) 
are selected as the adjoint velocity and pressure field corresponding to the mode whose 
amplitude in the far field we wish to determine, i.e. 

s‘ = (5, p”) = (Caw( y ) ,  jaw( y ) )  e-i(a”-wt) , where fi,,,,(y) = (%, icz$aw). (28) 

With these substitutions we find 

Integrating over y from y = 0 to 00, reveals that 

From the definition (6)-(8) of J ,  since a,(O) = 0 and i? (x ,O;o)  = u,(x;w), the y-  
component of J on y = 0 is 

(3 1) 
where the vector 

u,(x; w )  . gaw eciaX, 

We will call this vector the adjoint stress. 
Equation (30) is integrated from streamwise station x = xl( < -X) to station 

x = x,(> X). Since these locations are outside the domain of the sources, the 
disturbances satisfy the homogeneous equations of motion. The disturbance field can 
thus be decomposed into a sum of pure spatial modes. Integrating the left-hand sides 
of (30), and using (24), yields 
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where a'') and a") are the respective amplitudes of the mode $aw(y)ei(az-wt) at x1 and 
x,. For a normalized eigenmode it follows that 

- a"' = L; i,: q(x, y ,  w> - fiAy) e-'"" dy dx 

+ l ~ ~ l o m p ( x , y ;  ~)p",,(y)e-~~"dydx+ U b ( x ;  ~ ) . g ~ , e - ~ ~ " d x .  (34) 

The right-hand side of these equations indicates the change in amplitude of the mode 
between streamwise stations x = x, and x = x,. If there are no sources, then there is no 
change in amplitude. 

For convectively unstable flows, it has long been recognized (Gaster 1965) that the 
sign of Re(aa/aw) determines whether a mode is excited purely upstream or purely 
downstream of a source distribution. For both the boundary layer and the shear layer 
the mode of interest appears only downstream of any sources. If x1 is upstream of all 
sources, and x, is downstream of all sources then we can write a(') = 0. This gives the 
amplitude of the mode far downstream, a('), as the sum of the integrals on the right- 
hand side of (34). 

Each source type is weighted by a different field variable of the adjoint eigensolution. 
Momentum source alignment with the adjoint velocity field gives a measure of the 
influence which that source has in exciting the instability. For a pulsating mass source 
the adjoint pressure provides the correlation. With a velocity specified on the 
boundary, the alignment with vector @a, e-'"" dictates how strongly the boundary 
motion couples to the instability. 

In each instance the streamwise integration is weighted by e-ias. Since, typically, eiax 
grows downstream, e-'"" will grow upstream. There is no surprise here since sources 
further upstream will have a greater contribution to the far-field disturbance amplitude ; 
the response to such sources has convected further, and hence has grown more. 

L: 

4.3. Vorticity sources and boundary motions 
Replacing fi by its stream-function representation allows the term involving q(x, y ;  w )  
in (34) to be rewritten as 

1:: 1; q(x, y ; w )  - V x ($8 dy dx 

where Q(x, y ;  w )  e-"Ot = 2. (V x q(x, y ;  w ) )  eciWt is a vorticity source distribution which 
would appear, for example, on the right-hand side of the vorticity equation (11). 
Vorticity sources in the flow are weighted by the adjoint stream function. 

Rather than specify a velocity at the wall, suppose now that the wall oscillates about 
4' = 0 with a small velocity u,(x; w) .  The displacement of the surface from the mean 
position is then -u,(x;w)/iw. Linearizing the boundary condition at y = 0, an 
equivalent surface velocity distribution can be constructed : 
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The factor involving dU/dy arises because the surface is displaced into a region where 
there is a mean Aow. Substituting into the boundary integral in (34) we find that the 
contribution to the amplitude is 

- 1: u,(x; w )  - Yuw eciUx dx = ud(x ; w )  9 iw e-iax dx, (37) 

where 

4.4. Verijication of results 

It is now illustrated that the results derived here are in agreement with two previously 
solved linear receptivity problems: the vibrating ribbon problem, and excitation of a 
free shear layer. 

The classical vibrating ribbon problem was discussed in some detail recently by 
Ashpis & Reshotko (1990). A vibrating ribbon is placed beneath a parallel boundary 
layer flow (i.e. at y = 0) and, after t = 0, it oscillates with unit velocity (scaled on Urn) 

ub(x, t )  = 6(x)  eciWtg. (39) 

From (34) the amplitude of the response (x, < 0, x, > 0) is 

Ashpis & Reshotko’s solution is 

The equality of (40) and (41) can be shown as follows. First the linearized equations 
are differentiated with respect to a, while holding w constant. Let s, denote (au/aa, 
av/aa, ap/tla) ei(uz-wt). Substituting s, and the adjoint eigenfunction into the Lagrange 
identity, (4), it follows quickly that 

(42) 
a 

aY 
-if-J(s,s”) = -(’j-J(s,,s”)). 

Integrating over y from y = 0 to co, and making use of (6) and (8) in evaluating the 
right-hand side : 

(43) 
av 

- Waw, Awl = - - (0 ; a, w)p”,,(O). aa 
For a normalized solution, with I#,,, Jm] = 1, it then follows that 

as required. 
Huerre & Monkewitz (1985) consider the response of an inviscid free shear layer 

(U(y )  defined for - co < y < co) to excitation by a point vorticity source positioned at 
x = 0, y = yo. This appears as a source 

in (ll),  with R+ co. 
O(x,y, t )  = 6(~)6(y-y,)e-’”~ (45) 
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From (35) the response amplitude is 

[; J:, W) &Y -Yo) L ( Y )  e-’”” dY dx = J A Y O ) .  (46) 

For convenience a change of sign is made here in the source definition from that used 
by Huerre & Monkewitz. The response amplitude they compute is 

(47) 

Here D(yq; a, w )  defines the dispersion relation, and the superscript f denotes the 
eigenfunction in regions y 2 yo and y < yo respectively. 

The equality of (46) and (47) can be shown as follows. Let s+ and s- represent the 
eigensolution in the regions y > y o  and y < y o  respectively, and s: and s, be the 
derivatives of those fields with respect to a. Let s“ represent the corresponding 
eigensolution, defined for all y ,  of the adjoint Rayleigh equation (( 12) with R 3 co). It 
follows that 

- if.J(s+, s”) = (a/ay) (j. J(s:, s”)), (48) 

-if.J(s-,s”) = (i3/i3y)(j.J(s,,s”)), y <yo.  (49) 

y > yo, 

Integrating (48) from y = yo to co, and (49) from y = - 00 to yo and adding gives 

- iwaw, $,I = 8 .  (J(s,, s”) - J(C, 
= - i(aU( yo) - w )  $,(yo) (au-pa - au+/aa)y=yo 

It then follows, on the basis that [$,,,Jaw] = 1,  that 

as required. 

5. Receptivity characteristics of the Blasius boundary layer 
The Orr-Sommerfeld equation and its adjoint are solved for the Blasius profile on 

a finite I domain y E [0, y,] using a simple Chebychev Galerkin representation for 
and $,,,,. No-slip conditions (13) are applied on y = 0 and y = y,. The transformation 
y = y,,(c/2) (1 + [)/( 1 + c - maps the computational variable EE [ - 1,1] onto real 
space, where c is a constant (Macaraeg, Streett & Hussaini 1988). For the present 
computations y ,  = 100, c = 1/9, and 84 Chebychev polynomials are used. For a given 
frequencyf= w / R ,  the spatial eigenvalues are found by the companion matrix and 
iterative methods described by Bridges & Morris (1987). These methods are equally 
applicable to the adjoint equations. 

The Tollmien-Schlichting wave is normalized by max {IuJ y)l ; y E [0, y,]} = 1, and 
[$,,, Jaw] = 1 (see (17)). Bi-orthogonality between eigensolutions is also verified. 

Figure 1 shows u,,(y) for a spatially growing Tollmien-Schlichting wave at 
f= 20 x R = 1274, with the wavenumber being a = 0.0895-iO.00377 at this 
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FIGURE 1. Re (UJ, Im (uJ, and luaw1 as a function of y for a Tollmien-Schlichting wave at 
f =  20 x R = 1274, CL = 0.0895-iO.00377. 

condition. The maximum streamwise disturbance occurs at  y M 1.1, and the 
disturbance persists out to, and beyond, the edge of the Blasius boundary layer (99 % 
of free stream) at y M 5.  

The corresponding adjoint streamwise velocity CJy)  is shown in figure 2(a) .  The 
maximum value of about 6.5 is taken at y M 0.8, and the field exhibits simple 
exponential decay beyond y M 2.5. The adjoint streamwise velocity defines the strength 
of Tollmien-Schlichting wave arising due to an unsteady point force aligned with the 
free-stream direction. A unit streamwise force applied at  a height 0.8 above the wall 
will induce a Tollmien-Schlichting wave of amplitude 6.5. The presence of this wave 
will become clear further downstream when transients associated with the forcing have 
decayed. If the same forcing is applied further from the wall ( y  > 2.5), the response will 
be considerably weaker. 

The simple peak structure in lC,w(y)l is observed over a wide range of frequencies and 
Reynolds numbers. The maximum value taken by lC,,(y)l and the y-location j,,, at 
which is occurs are shown in Figures 3(a) and 3(b). The frequency and Reynolds- 
number range are chosen to cover most of the unstable region for the Blasius boundary 
layer. The maximum response which can be achieved by unit-strength point streamwise 
forcing increases with Reynolds number. For unstable waves the distance from the wall 
where streamwise forcing will have the largest effect is less than 1.25. The dashed 
curves in figure 3(b)  indicate the location of the critical layer (y-location such that 
U(y)  = Re (w/cx)). There is a clear correspondence between the location of maximum 
sensitivity and the critical layer. 

The adjoint normal velocity v”,,(y) is shown in figure 2(b).  This indicates how 
receptive the Tollmien-Schlichting wave is to point forcing aligned normal to the wall. 
The simple peak in lfi,,l is not as pronounced as that of lCawl, and the magnitude of l f i a w l  

is significantly smaller (about 5 % of 1C,J at y = 0.8). Streamwise forcing will induce a 
much stronger response than forcing aligned normal to the wall. Note that 6, = icxv,, 
so that the receptivity to vorticity sources is also indicated by figure 2(b).  

The adjoint pressure p”,,(y) is shown in figure 2(c). This indicates how strongly a 
Tollmien-Schlichting wave will be excited by an unsteady point mass source, i.e. an 
inhomogeneity in the continuity equation. As with the adjoint velocity fields the 

. *  
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FIGURE 4. The magnitude of the adjoint pressure as the wall Fa,JO)1 as a function of Reynolds 
number, for various frequencies. 
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FIGURE 5. The magnitude of the adjoint wall shear (l/R)/d&,/dy(O)~ as a function of Reynolds 
number, for various frequencies. 

magnitude pa,(y)l has a single peak in the vicinity of y = 1 and decays as y +  co. The 
magnitude of the adjoint pressure at the wall Ip”,,(O)l is shown for a range of Reynolds 
numbers and frequencies in figure 4. This shows how strong the response will be if there 
is an unsteady normal velocity at a point on the wall. The trend is one of decreasing 
magnitude with increasing Reynolds number until a minimum is reached in the vicinity 
of the upper branch. 

The adjoint pressure at the wall is the normal component of the adjoint stress vector 
(32). The magnitude of the streamwise component, (1/R) (du,,/dy) evaluated at  y = 0, 
is shown in figure 5. This shows how strongly the Tollmien-Schlichting wave is excited 
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by a streamwise velocity component at a point on the surface. Clearly, by comparison 
of the magnitudes in figures 4 and 5, normal velocity at  the boundary induce 
disturbances typically 20 times larger than streamwise motions. 

The various adjoint fields indicate how strongly the Tollmien-Schlichting wave is 
excited by a point source positioned a distance L from the plate leading edge. If the 
source is distributed, then the Fourier transform in the streamwise direction at the 
local Tollmien-Schlichting wavenumber defines a geometrical factor governing the 
receptivity process (see (34), (35) and (37)). 

As an example, consider the response to unsteady normal suction/blowing 
through as slot of width d in the plate, centred a distance L from the leading edge. 
If vw(x*/d;  w )  e-iwt, -f 6 x* /d  6 i, defines the blowing/suction distribution, with 
x* = 6x being a dimensional coordinate, the response, from (34), is 

The change of variable x' = 6x /d  has been made in the Fourier transform, Rd = Urn d /v  
is a Reynolds number based on slot width, and h = 27cS/a is the dimensional 
Tollmien-Schlichting wavelength. The wavelength h varies slowly with Reynolds 
number for a given frequency. The integral depends upon the source geometry, and the 
slow variation of d / h  makes this a slowly varying function of the streamwise location 
of the slot. 

Expression (52) gives the amplitude of the a-wavelength component of the 
disturbance in the neighbourhood of the source. The factor 

defines the change in amplitude between the point of application of the forcing and the 
lower branch of the neutral stability curve, a convenient reference point at  which to 
compare responses. Parameter R z b ( f )  defines the Reynolds number of the lower 
branch at frequency f, Im (a(Rzb)) = 0. If the forcing is applied downstream of the 
lower branch, then this factor defines an equivalent amplitude. It gives the amplitude 
of the wave that must exist at the lower branch, in the absence of any source 
downstream, for a wave of the required amplitude to exist at the point where the source 
is to be located. 

The amplitude of the Tollmien-Schlichting wave at the lower branch of the neutral 
stability curve is given by 

A plot of log,,(X(R,f)/R) as a function of R is shown in figure 6, for various choices 
of frequency f. 

The factor x (R , f ) /R  clearly can vary by several orders of magnitude, especially for 
the lower frequencies. The magnitude of the adjoint pressure, shown in figure 4, varies 
by less than one order of magnitude with both frequency and Reynolds number. Thus 
for a source of given geometry and strength, the variation of the response as a function 
of the streamwise position of the source will be dominated by the factor x ( R , f ) / R :  the 
distance that the Tollmien-Schlichting wave is free to travel through the unstable 
region is the most significant factor in determining a measure of the response, especially 
at lower frequencies. 
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FIGURE 6. Plot of the factor log,,(X(R,f)/R) as a function of Reynolds number, for various 
frequencies. The lower-branch position at each frequency is indicated by the ticks at the top of the 
figure. 

A similar argument follows for the response to a vibrating ribbon, which can be 
modelled as an unsteady source of momentum in the flow. Examination of the adjoint 
velocity field indicates that, at a distance L from the leading edge, positioning the 
ribbon in the vicinity of y = 0.8 (a physical height 0.8 (vL/U,)~” above the plate, or 
about half the displacement thickness) will lead to the largest response. When the 
ribbon is located close to the lower branch (physical distance (Rlb(f))’v/Um from the 
leading edge) the largest overall response will be achieved because the wave is able to 
grow most by travelling through the entire unstable region. (This is a more realistic 
source model than that used in the analyses of Gaster 1965 and Ashpis & Reshotko 
1990. The emphasis in those analyses was, of course, on the structure rather than the 
magnitude of the response.) 

6. Scattering of free-stream disturbances 
6.1. Surface roughness 

Sound waves in the free stream can be scattered into Tollmien-Schlichting waves in a 
boundary layer if the surface is rough. This scattering is believed to play a significant 
role in the transition process, and was investigated by Goldstein (1985) using triple- 
deck theory to obtain the behaviour in the infinite-Reynolds-number asymptotic limit 
near the lower branch of the neutral stability curve. That problem is solved here using 
an adjoint approach within the framework of the Orr-Sommerfeld operator. A finite- 
Reynolds-number approach has also been developed by Crouch (1 992) and Choudhari 
& Streett (1992), for incompressible flow, and by Zhigulev & Fedorov (1987) for 
compressible flow. 

Consider a flow whose velocity approaches a uniform mean flow plus small planar 
fluctuations f e-i”t in the streamwise direction as y + 00. Such a motion represents the 
passage of an (infinite-wavelength) acoustic wave in the free stream. 

Consider a rough boundary whose mean position lies at y = 0, with the displacement 
from y = 0 being ch h(x), where Ih(x)l < 1, and h(x) = 0 for 1x1 larger than some value 
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A’,, say. The roughness will serve to scatter the unsteady motion far from the surface 
into Tollmien-Schlichting waves. We would like to correlate the amplitude of these 
waves with the acoustic motion. This can be achieved by performing a perturbation 
analysis on the basis that the roughness, as measured by ch, is sufficiently small. 

In the absence of any roughness there is a profile U b )  on top of which is 
superimposed an unsteady motion 

The growth of the unperturbed boundary layer can be ignored to the present order of 
approximation. The planar fluctuations have a Stokes’ wave signature close to the 
plate. 

Let the roughness perturb the mean flow by ehS‘, and the unsteady flow by eh(v’(r), 
p’(r))ePiwt. Here S’ = (V’(r),  P‘(r)), with V‘ = U’f+ V‘i. At order ch the mean flow 
correction is described by 

v(y, t) = u( y) e-’Wt f, where u( y) = 1 - e-(WR/2)”2(1-i)Y. (55 )  

L(Uf;R) V’+Vp‘ = 0, (56) 
v. V‘ = 0, (57) 

dU 
V’ = -h(x)-f on y = 0, 

dY 
+ O  as x++co, Vy, andas y+co, Vx. ( 5 8 )  

In fact, it is assumed that far from the roughness patch the flow field recovers 
sufficiently quickly that the scattering takes place in an interaction zone in the vicinity 
of the roughness. 

For the correction to the unsteady motion (55 )  

a v’ 
-iov’+L(U2; R)v’+Vp’ = -2 (59) 

v. v’ = 0, (60) 

(61) 
du 

dY 
v’ = -h(x)-f on y = 0. 

It is also required that there be no Tollmien-Schlichting wave approaching the region 
from upstream, at this order. The flow and boundary distortion introduce effective 
sources of momenta and boundary motion, which excite Tollmien-Schlichting waves. 
The linearization of the boundary condition requires that the surface be displaced 
much less than a quarter of a Stokes’ wavelength, i.e. ch 4 ( 7 ~ ~ / 2 w R ) ’ / ~ .  

Now consider a control volume - X <  x < X ,  0 < y < co, for some X ( >  A’,). 
Writing 

a,(X)  = [J((v’,p’) e-iWt, (ijaw,paw) e-i(az-wt) 1 * a],=, x dY, (62) 1: 
it follows, using a similar procedure to that pursued to solve (25)-(27), that 

where A, and A, give the contributions from the momenta and wall sources 
respectively : 

a+--- = A,+A,, (63) 
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Integrating A ,  by parts: 

where 

and the boundary integral 

2-x 
T’ (X)  = - [ lom ( V’u) . i?,,,, eciaX dy] . (68) 

2--x 

The volume integral in (66) is now re-expressed in terms of h by writing the following 
adjoint problem : 

L ( u ~ ;  R) ( V(y) eciaZ) + v(F(y> eciaZ) = Q( y) ecia2, (69) 

v - ( V( y) e-’“”) = 0, (70) 

P = o  on ~ = o , Y .  (71) 

This problem defines v. Using a stream-function representation for v( y) e-iaz, taking 
the curl of equation (69) gives an inhomogeneous adjoint Orr-Sommerfeld problem 
which can be solved with relative ease by numerical means. 

Substituting for Q(y) in the volume integral in (66) with the left-hand side of (69), 
and making use of the Lagrange identity, we find that 

A ,  = - l:xdx Jx” dy V’(x, y).(z( V ;  R) ( + V(FepiaX)) + T ’ ( X )  

dy{(L(V; R) V’+Vpl). ~ e - ‘ ” ” - V ~ ( J ( S ’ , ~ ) } + T ’ ( X )  
= rxdXI: 

= -l(Eq R dY dY y=o rxdxh(x)e-’“’+T(X), 

after substituting (6) for J(S’, 9, where ,!? = (v, j )  e-ia2. Boundary integral T ( X )  
includes T ’ ( X )  plus other contributions from stations x = +X.  The integral T ( X )  
represents the contribution of scattering effects in the region 1x1 > X .  Assuming a local 
interaction zone requires that T ( X )  --f 0 as X +  00. 

As X increases, a ,  approaches the amplitude of the Tollmien-Schlichting wave at 
stations x = + X .  The boundary condition demands that there be no incoming 
Tollmien-Schlichting wave from upstream at order eh indicating that a- + 0. Thus the 
amplitude of the instability induced by the scattering of the free-stream disturbance is 

m 

a, = &a), where h(a) = (73) 

and (74) 

When solving (69)-(71) for v, 104 Chebychev polynomials are used to construct the 
stream function for v. A plot of l/il as a function of f R 3 / 2  for various frequencies is 
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theory (Goldstein), valid near the lower branch (chain-dash line) as R +  a. (b) Plot of IP(0)l as a 
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shown in figure 7(a). The asymptotic theory of Goldstein (1985) is valid in the vicinity 
of, and below, the lower branch of the neutral stability curve (the asymptotic position 
fR3/' = 0.44 is shown as a chain-dash line) as the Reynolds number approach infinity. 
The asymptotic value for 1'1 is shown as a dashed line and represents the quantity 
A: lA(flR/A0)312)1(27c)11', A, = U'(0) = 0.332, where A is taken from Goldstein's figure 
5.  This defines the maximum streamwise fluctuations in the middle deck. The curves 
with lower frequencies of course have higher neutral-stability Reynolds numbers and 
consequently are expected to approach the asymptotic theory more closely. In fact all 
the curves collapse to close to the asymptotic value aroundfR3/' = 0.44. The maximum 
value of (A1 is taken for fR312 z 2, beyond which the value diminishes. This maximum 
is above the upper branch of the neutral stability curve at high frequencies, and below 
it at low frequencies. 

Both Crouch (1992) and Choudhari & Streett (1992) calculate the efficiency factor 
for this problem by evaluating a residue from contour integration. The results of 
Crouch are in direct agreement with the present results (see his figure 3). The parameter 
A:) defined by Choudhari & Streett is equal to (1.721)' (27c)"'A. 

6.2. Variations in surface admittance and mean suction 
The surface admittance is defined as the ratio at the wall of the unsteady normal 
velocity to the unsteady pressure, and thus can be used to represent how the surface 
responds dynamically to unsteady pressures. Suppose that there are spatially uniform 
fluctuations poePiwt in the pressure field. If P,(x) is the surface admittance in the 
vicinity of a position a distance L from the leading edge, then the surface will respond 
with a normal velocity fluctuation poPw(x)e-iwt. From (34), (32), this will induce a 
Tollmien-Schlichting wave of amplitude 

The adjoint pressure at the wall defines the efficiency factor for the scattering of free- 
stream pressure fluctuations into Tollmien-Schlichting waves. Choudhari & Streett 
(1992) obtain the equivalent quantity from a residue calculation. It is denoted by them 
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as A:) and is equal to 1.721 (27~)l~~p",~(O) (see figure 4). The present numerical values 
agree with theirs (Choudhari & Streett, figure 9b). 

The distortion of the mean flow in the vicinity of suction holes or slots can also serve 
to scatter free-stream disturbances into Tollmien-Schlichting waves. Consider a 
velocity distribution V,(x) representing a suction/blowing distribution on the plate. 
The plate boundary condition V'(x,O) = V,(x) replaces that in (58). The effect of 
variable wall admittance has already been discussed so it is assumed that u' = 0 at the 
plate. This replaces the wall condition in (61). It follows that the amplitude of the 
Tollmien-Schlichting wave is 

(@ +--2)- l d f i  co dx V,(x) ecias. 
R dY 

The value of IP"(0)l is plotted in figure 7(b), and represents the efficiency factor for 
scattering of acoustic waves by normal wall suction. Choudhari & Streett (1992) 
calculate the effect of normal blowing/suction ( 5 . 2  = 0) by a residue calculation. 
They name it A:) and it is equal in value to 1.721 ( 2 7 ~ ) ~ ~ ~  p(0). 

7. Conclusions 
The normalized adjoint to the Tollmien-Schlichting eigensolution is shown to define 

the efficiency with which various types of sources will excite this characteristic 
boundary layer motion. The value of the adjoint velocity at a point in the flow indicates 
the response which will arise from an unsteady momentum source at that point. The 
adjoint pressure and the adjoint stream function play the same role for mass sources 
and vorticity sources, respectively. The response to motion at the boundary, or of the 
boundary, is taken into account by considering an adjoint stress vector. 

The adjoint fields are easy to compute, and have a clear physical interpretation, more 
so than the residue expressions resulting from a traditional Fourier-inversion solution 
method. Mathematically, the adjoint field values are equivalent to the results of residue 
evaluations. The vibrating ribbon problem (Ashpis & Reshotko 1990), and the 
response of an inviscid wake to a point vorticity source (Huerre & Monkewitz 1985), 
have been explored as examples. 

Investigation of the Blasius boundary layer reveals that unsteady forcing in the 
vicinity of the critical layer will induce the largest response of the Tollmien-Schlichting 
wave. The precise height depends upon frequency and Reynolds number (see figure 
3b). Forcing in the wall-normal direction is much less effective than forcing aligned 
with the stream. Conversely, for motion at the boundary (or of the boundary) the 
response to normal motion is much stronger than streamwise motion. 

Disturbances can grow by several orders of magnitude as they travel downstream in 
the unstable regime, particularly at lower frequencies. The relatively slow streamwise 
variation in the adjoint field magnitudes indicates that forcing in the vicinity of the 
lower branch of the neutral stability curve will induce the largest possible response. 

A finite-Reynolds-number approach has been developed to describe the scattering of 
infinite-wavelength free-stream disturbances into Tollmien-Schlichting waves by 
surface roughness. The results approach the asymptotic results of Goldstein (1985) 
close to the lower branch, at high Reynolds number, and are in direct agreement with 
previous finite-Reynolds-number computations. 

The author is pleased to acknowledge several helpful discussion with M. Tobak and 
P. A. Durbin. 
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